Maximum independent set of rectangles
نویسندگان
چکیده
We study the Maximum Independent Set of Rectangles (MISR) problem: given a collection R of n axis-parallel rectangles, find a maximum-cardinality subset of disjoint rectangles. MISR is a special case of the classical Maximum Independent Set problem, where the input is restricted to intersection graphs of axis-parallel rectangles. Due to its many applications, ranging from map labeling to data mining, MISR has received a significant amount of attention from various research communities. Since the problem is NP-hard, the main focus has been on the design of approximation algorithms. Several groups of researches have independently suggested O(logn)-approximation algorithms for MISR, and this remained the best currently known approximation factor for the problem. The main result of our paper is an O(log logn)-approximation algorithm for MISR. Our algorithm combines existing approaches for solving special cases of the problem, in which the input set of rectangles is restricted to containing specific intersection types, with new insights into the combinatorial structure of sets of intersecting rectangles in the plane. We also consider a generalization of MISR to higher dimensions, where rectangles are replaced by ddimensional hyper-rectangles. Our results for MISR imply an O((logn)d−2 log logn)-approximation algorithm for this problem, improving upon the best previously known O((logn)d−1)-approximation.
منابع مشابه
Coloring and Maximum Independent Set of Rectangles
In this paper, we consider two geometric optimization problems: Rectangle Coloring problem (RCOL) and Maximum Independent Set of Rectangles (MISR). In RCOL, we are given a collection of n rectangles in the plane where overlapping rectangles need to be colored differently, and the goal is to find a coloring that minimizes the number of colors. Let q be the maximum clique size of the instance, i....
متن کاملLabel placement by maximum independent set in rectangles
Motivated by the problem of labeling maps, we investigate the problem of computing a large non-intersecting subset in a set of n rectangles in the plane. Our results are as follows. In O(n log n) time, we can nd an O(logn)-factor approximation of the maximum subset in a set of n arbitrary axis-parallel rectangles in the plane. If all rectangles have unit height, we can nd a 2-approximation in O...
متن کاملApproximating the Maximum Independent Set and Minimum Vertex Coloring on Box Graphs
A box graph is the intersection graph of a finite set of orthogonal rectangles in the plane. The problem of whether or not the maximum independent set problem (MIS for short) for box graphs can be approximated within a substantially sub-logarithmic factor in polynomial time has been open for several years. We show that for box graphs on n vertices which have an independent set of size Ω(n/ log ...
متن کاملHow to Tame Rectangles: Solving Independent Set and Coloring of Rectangles via Shrinking
In the Maximum Weight Independent Set of Rectangles (MWISR) problem, we are given a collection of weighted axis-parallel rectangles in the plane. Our goal is to compute a maximum weight subset of pairwise non-overlapping rectangles. Due to its various applications, as well as connections to many other problems in computer science, MWISR has received a lot of attention from the computational geo...
متن کاملNonoverlapping Local Alignments ( Weighted Independent Sets of Axis ParallelRectangles ) ? Vineet
We consider the following problem motivated by an application in computational molecular biology. We are given a set of weighted axis-parallel rectangles such that for any pair of rectangles and either axis, the projection of one rectangle does not enclose that of the other. Deene a pair to be independent if their projections in both axes are disjoint. The problem is to nd a maximum-weight inde...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009